Related Questions with Solutions

Questions

Quetion: 01

Let A and B be two symmetric matrices of order 3.

Statement-1 : *A*(*BA*) and (*AB*)*A* are symmetric matrices.

Statement-2 : *AB* is symmetric matrix if matrix multiplication of *A* with *B* is commutative.

A. Statement-1 is true, Statement-2 is false.

B. Statement-1 is false, Statement-2 is true.

C. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

D. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

Solutions

Solution: 01

Let A(BA) = PThen $P^T = (ABA)^T = A^T B^T A^T$ = ABA = PThus, P is symmetric. Also, A[BA] = [AB]A by associativity. \Rightarrow Statement -1 is true. Now, $(AB)^T = B^T A^T = BA = AB$ if the matrices A and B commute. \Rightarrow Statement-2 is also true.

Correct Options

Answer:01 Correct Options: D